Nowcasting Storm Initiation and Growth Using GOES-8 and WSR-88D Data

نویسندگان

  • RITA D. ROBERTS
  • STEVEN RUTLEDGE
چکیده

The evolution of cumulus clouds over a variety of radar-detected, boundary layer convergence features in eastern Colorado has been examined using Geostationary Operational Environmental Satellite (GOES) imagery and Weather Surveillance Radar-1988 Doppler (WSR-88D) data. While convective storms formed above horizontal rolls in the absence of any additional surface forcing, the most intense storms initiated in regions above: gust fronts, gust front interaction with horizontal rolls, and terrain-induced stationary convergence zones. The onset of vigorous cloud growth leading to storm development was characterized by cloud tops that reached subfreezing temperatures and exhibited large cooling rates at cloud top 15 min prior to the first detection of 10dBZ radar echoes aloft and 30 min before 35 dBZ. The rate of cloud-top temperature change was found to be important for discriminating between weakly precipitating storms (,35 dBZ ) and vigorous convective storms (.35 dBZ ). Results from this study have been used to increase the lead time of thunderstorm initiation nowcasts with the NCAR automated, convective storm nowcasting system. This improvement is demonstrated at two operational forecast offices in Virginia and New Mexico.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forecasting Convective Initiation by Monitoring the Evolution of Moving Cumulus in Daytime GOES Imagery

This study identifies the precursor signals of convective initiation within sequences of 1-km-resolution visible (VIS) and 4–8-km infrared (IR) imagery from the Geostationary Operational Environmental Satellite (GOES) instrument. Convective initiation (CI) is defined for this study as the first detection of Weather Surveillance Radar-1988 Doppler (WSR-88D) reflectivities 35 dBZ produced by conv...

متن کامل

Analysis of a Tornadic Meoscale Convective Vortex Based on Ensemble Kalman Filter Assimilation of CASA X-band and WSR-88D Radar Data

ii Abstract One of the goals of the National Science Foundation Engineering Research Center (ERC) for Collaborative Adaptive Sensing of the Atmosphere (CASA) is to improve storm-scale numerical weather prediction (NWP) by collecting data with dense X-band radar network which provides high-resolution low-level coverage, and by assimilating such data into NWP models. During the first spring storm...

متن کامل

Implementation and evaluation of cloud analysis with WSR-88D reflectivity data for GSI and WRF-ARW

[1] The cloud analysis procedure of the Advanced Regional Prediction System (ARPS) is implemented in a proposed operational numerical forecast system composed of the Grid-point Statistical Interpolation (GSI) and the Advanced Research WRF (WRF-ARW). The case of 23 May 2005 Central Plains storm cluster is used to assess the impact of the cloud analysis using reflectivity data from six operationa...

متن کامل

Application of Multi-channel 3D-cube Successive Convolution Network for Convective Storm Nowcasting

Convective storm nowcasting has attracted substantial attention in various fields. Existing methods under a deep learning framework rely primarily on radar data. Although they perform nowcast storm advection well, it is still challenging to nowcast storm initiation and growth, due to the limitations of the radar observations. This paper describes the first attempt to nowcast storm initiation, g...

متن کامل

Improving Weather Radar Data Quality for Aviation Weather Needs*

A fundamental function of any aviation weather system is to provide accurate and timely weather information tailored to the specific air traffic situations for which a system is designed. Weather location and intensity are of prime importance to such systems. Knowledge of the weather provides “nowcasting” functionality in the terminal and en route air spaces. It also is used as input into aviat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002